

Cryogenic Test Results of Hextek Mirror

James B. Hadaway

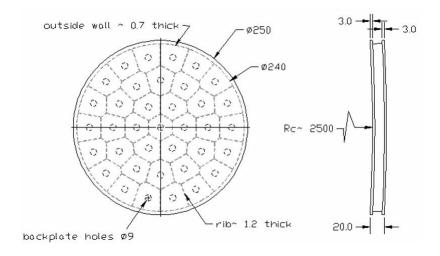
The University of Alabama in Huntsville
Phil Stahl, Ron Eng, & Bill Hogue

Marshall Space Flight Center

August 17, 2004

Introduction

- Will describe results of two separate cryo-tests of the 0.25m borosilicate mirror manufactured by Hextek Corporation and polished by MSFC-SOMTC.
- First cryo-test in December of 2003 to measure surface figure change from ambient (~290K) to cryo (~30K) and repeatability of change.
- Second cryo-test in April & May of 2004 to assess effectiveness of single cryo-null figuring run made by QED Technologies, Inc. using MRF and to measure RoC change from ambient to cryo.



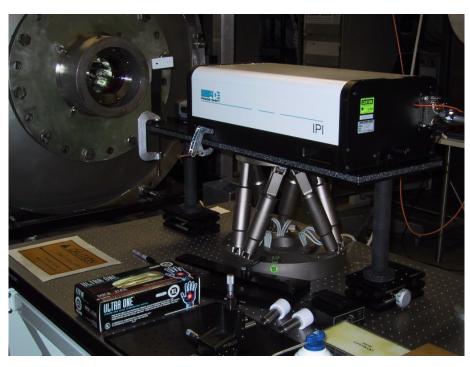
Test Mirror

See optics.nasa.gov (Tech Days pages) for Hextek papers with more info on design & manufacture.

Blank drawing (not final dimensions).

Test Article & Mounting

- High-temperature/pressure gas-fused borosilicate sandwich-type mirror:
 - Diameter: 248mm (circular)
 - Radius-of-curvature: 2500mm (R/10)
 - Face-sheet: ~1.5mm thick after grind & polish by MSFC-SOMTC
 - Back-sheet: 3.0mm thick
 - Core structure: 20mm thick, ~43mm diameter cells, 0.5-1.2mm thick walls
 - Areal density: 14kg/m²
 - Fiducials: 4 filled circles (6.5mm Ø) at 90° intervals on 220mm Ø circle.
- Temperature Sensors:
 - 3 silicon temp diodes attached to mirror back using Kapton tape: 1 each near top, center, & bottom (more diodes attached to test stand, shroud, etc).
- Mirror Mounting:
 - Hung on Kapton-wrapped bolt inserted into upper vent hole on mirror back.
 - Mirror bottom rested against two Teflon bolt heads.
 - Teflon safety bumper located in front of mirror top (not touching).
 - Attached to aluminum test stand (with actively cooled base).



Test Set-Up

Mirror installed on test stand in 1m x 2m chamber.

IPI with F/8 diverger & 1Kx1K CCD atop Hexapod looking thru 25.4mm thick BK7 window into chamber (from 1st test). During 2nd test, ADM mounted atop IPI with two fold mirrors to align to optical axis.

UAH. Test Objectives & Uncertainty

Test Objectives:

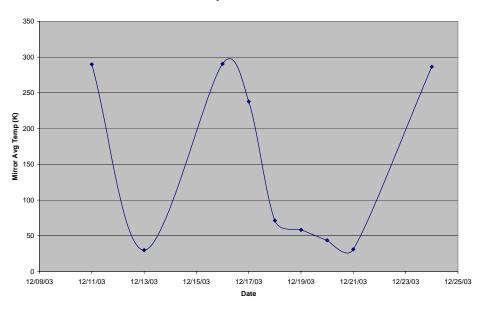
- First Test: Measure surface figure error at ambient (~290K) & cryo (~30K) at least twice for repeatability.
- Second Test: Assess effectiveness of cryo-null figuring and evaluate repeatability of cryo-deformation.
- Both Tests: Measure surface figure error at other temperatures of interest (especially 75K, 55K, & 45K).
- Second Test: Measure RoC at ambient temp/press and change to 30K (-1.35mm expected) using Leica Absolute Distance Meter (±50um).

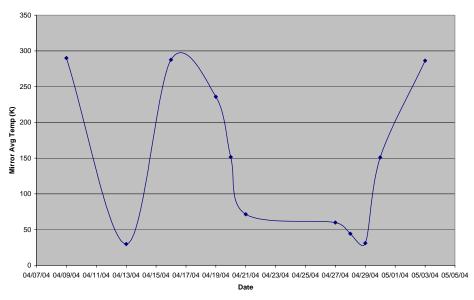
Surface Figure Error Measurement Uncertainty:

- Absolute uncertainty, without subtraction of instrumental error, estimated at +7nm-rms.
- Uncertainty in any difference between two measurements estimated at only ±3nm-rms.
- Both absolute & difference uncertainties for residual results (FRINGE) Zernikes removed) estimated at ±2nm-rms.
- Effects of thermal gradients in mirror and/or differences in such gradients between any two measurements not accounted for in estimates above.

Definitions & Notes

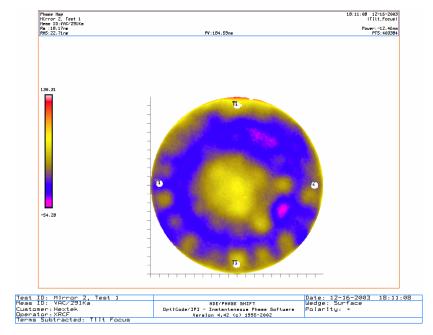
- Three types of maps shown:
 - Total Figure Error surface error map with piston, tilt, & focus removed.
 - Zernike Fit of Figure Error representation of Total Figure Error by fit of all 37 FRINGE Zernike terms.
 - Residual Figure Error surface error map with all 37 FRINGE
 Zernike terms removed (i.e. Total minus Zernike Fit).
- Each map shown in actual mirror orientation.
- Physical aspects of data:
 - Spatial resolution is 0.341mm/pixel.
 - Average diameter of measured area is 241mm (97.2% of physical diameter).
- ADM requires strong specularly-reflected beam from target:
 - Thus, circular piece of silver-Kapton tape (13mm Ø) applied to center of mirror face during 2nd test to provide adequate reflectance.

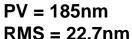

Figure & RoC Change vs Temperature

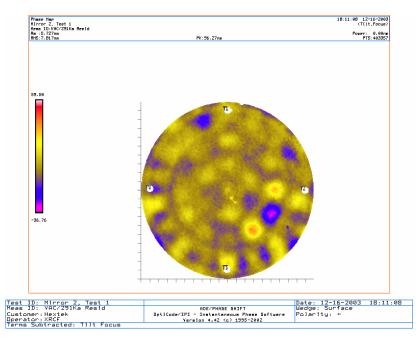

Temperature Timelines

Timeline for 1st Cryo-Test of Hextek 0.25m Mirror

Timeline for 2nd Cryo-Test of Hextek 0.25m Mirror




291K (1st Test, Between Cycles)



Total Figure Error

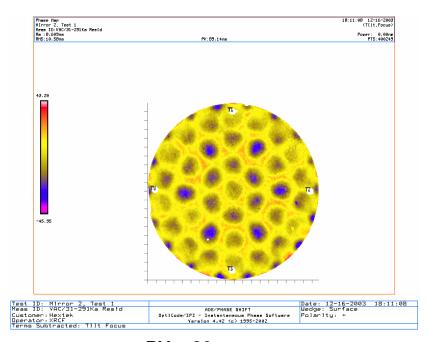
Residual Figure Error

PV = 96nm RMS = 7.8nm

Repeatable cycle-to-cycle & test-to-test.

Cryo Deformation, 31-291K

(1st Test, 2nd Cycle)

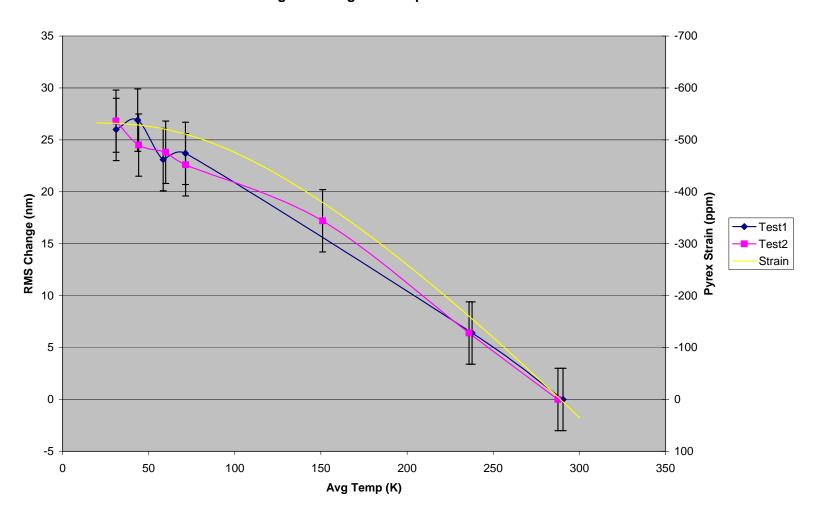


Total Figure Error

PV = 157nm RMS = 26.0nm

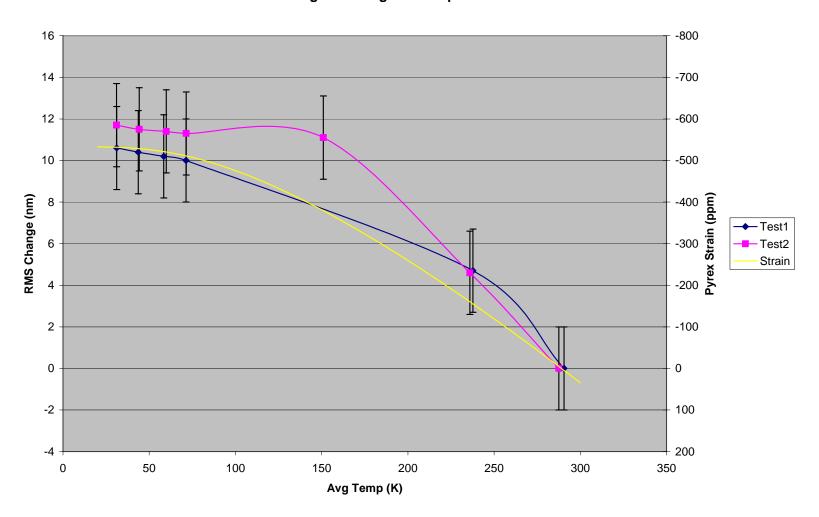
Residual Figure Error

PV = 89nm RMS = 10.6nm


Repeatable cycle-to-cycle & test-to-test.

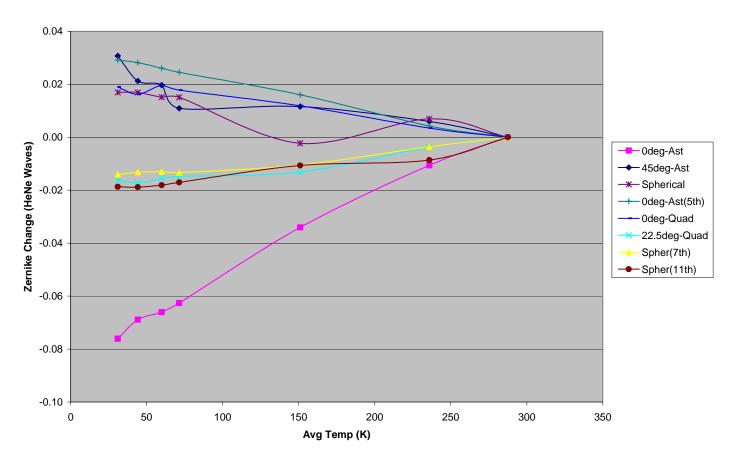
RMS Total Figure Change vs Temperature

RMS Surface Figure Change vs Temperature for Hextek 0.25m Mirror



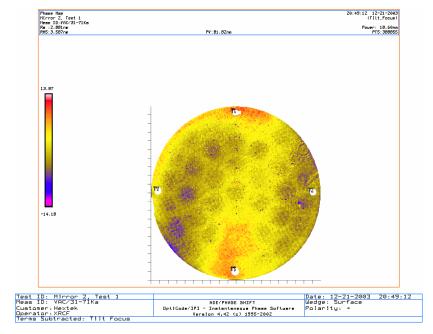
RMS Residual Figure Change vs Temperature

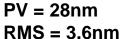
RMS Residual Surface Figure Change vs Temperature for Hextek 0.25m Mirror

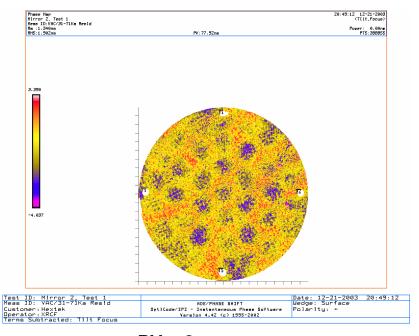


Zernike Change vs Temperature (2nd Test)

Zernike Change vs Temperature for Hextek 0.25m Mirror (Test 2, Cycle 2)


Cryo Deformation, 31-71K


(1st Test, 2nd Cycle)

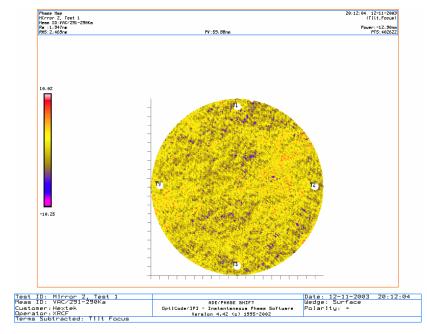


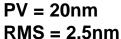
Total Figure Error

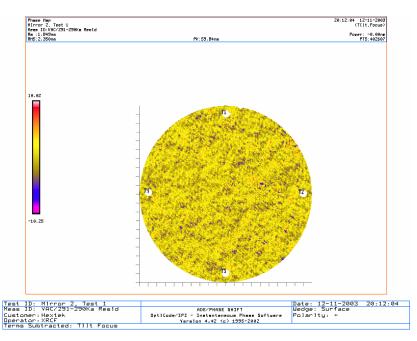
Residual Figure Error

PV = 8nm RMS = 1.9nm

Repeatable test-to-test.




Post minus Pre-Cryo Ambient Change, 291-290K (1st Test, 1st Cycle)

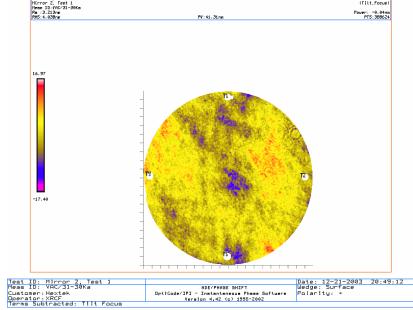


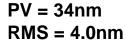
Total Figure Error

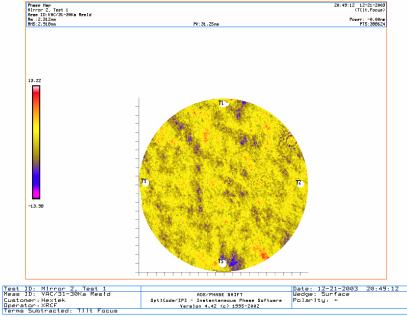
Residual Figure Error

PV = 20nm RMS = 2.4nm

Repeatable cycle-to-cycle & test-to-test.




UAH. 2nd minus 1st 30K, 31-30K (1st Test)



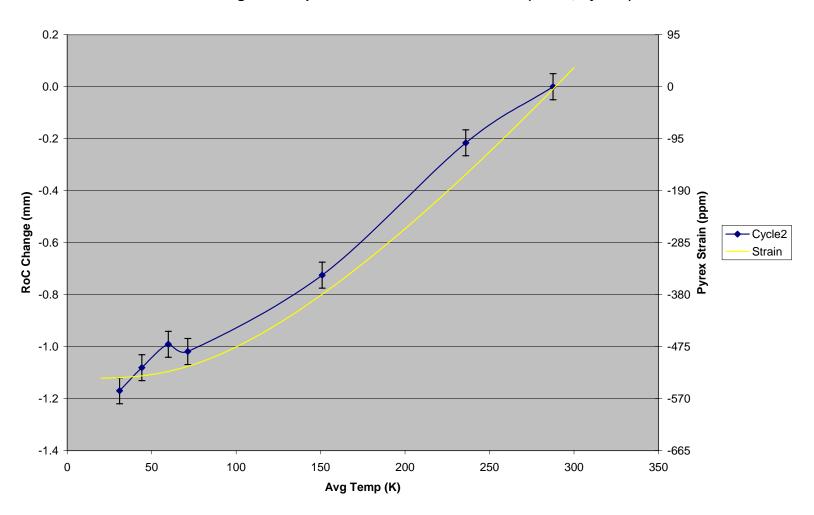
Total Figure Error

Residual Figure Error

PV = 26nmRMS = 2.9nm

Repeatable test-to-test.

Absolute RoC at 290K


- Measured absolute RoC at 290K during 2nd test.
 - ADM moved to tripod behind IPI optical table (to make distance to IPI focus >1.5m min measurable distance).
 - Installed small flat mirror at IPI focus for measurement to mirror centerof-curvature.
 - Ambient pressure.
 - Chamber dome (i.e. window) removed from ADM path.
- RoC results from two distance measurements.
 - Aligned IPI to mirror, nulled focus, aligned ADM to IPI/mirror, then measured distance #1.
 - Inserted flat mirror at IPI focus, aligned mirror to IPI (cats-eye), nulled focus, tweaked alignment of mirror to ADM, then measured distance #2.
 - RoC(290K) = D1 D2 = 2505.016 \pm 0.050mm

RoC Change vs Temperature (2nd Test)

RoC Change vs Temperature for Hextek 0.25m Mirror (Test 2, Cycle 2)

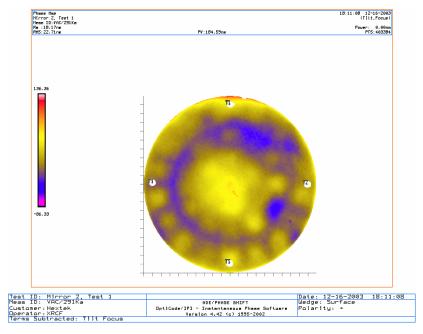
Summary of Figure & RoC Change vs Temperature

- Total figure change (26nm-rms) near linear vs temp and dominated by 0° astigmatism.
- Residual figure change (11nm-rms) closer to borosilicate strain curve, and shows obvious quilting of core structure.
- Total figure change within 30K to 70K range small (4nm-rms), but real, and dominated by 0° astigmatism.
- Residual figure change within 30K to 70K range even smaller (2nm-rms), but also real, with slight change in quilting.
- Figure at ambient (~290K) very repeatable (<3nm-rms). So, no change in ambient figure due to cryo-cycling.
- Figure at cryo (~30K) repeatable (<4nm-rms).
- Cryo-deformation between 290K & 30K very repeatable.
- RoC change (-1.17mm) near linear vs temp and differs from expected value (-1.35mm) by only +0.18mm (+13%).
- RoC very repeatable at ambient & cryo.

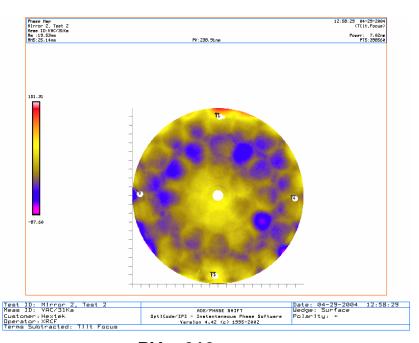
Effectiveness of Cryo-Null Figuring

Goal of Cryo-Null Figuring

- Mirror cryo-null figured by QED using 30K-290K change from 1st cryo test as hit map.
- Thus, if perfectly cryo-null figured, figure at 30K would now be exactly same as that seen at 290K during 1st cryo test.



Visual Check of Cryo-Null Figuring Efficiency: [291K, 1st Test] & [31K,


2nd Test] (should be same)

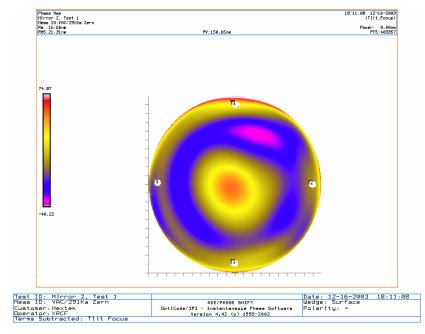
Total Figure Error at 291K From 1st Cryo Test

PV = 157nm RMS = 22.7nm

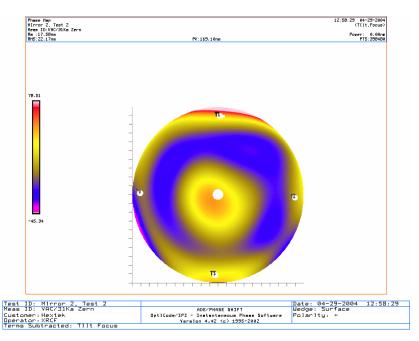
Total Figure Error at 31K From 2nd Cryo Test

PV = 210nm RMS = 25.1nm

Low-order match looks good, but appears that 31K, 2nd Test has more guilting.



Visual Check of Cryo-Null Figuring Efficiency: [291K, 1st Test] & [31K,


2nd Test] (should be same)

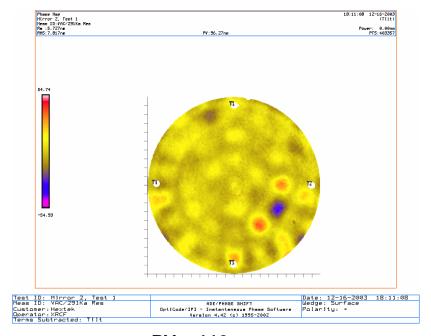
Zernike Fit of Figure Error at 291K From 1st Cryo Test

PV = 115nm RMS = 21.3nm

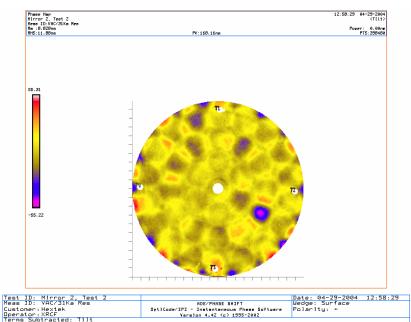
Zernike Fit of Figure Error at 31K From 2nd Cryo Test

PV = 124nm RMS = 22.2nm

Confirms that low-order match looks pretty good visually.



Visual Check of Cryo-Null Figuring Efficiency: [291K, 1st Test] & [31K,



2nd Test] (should be same)

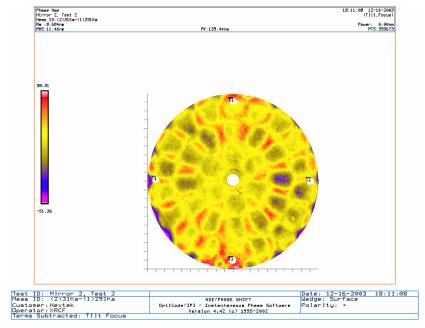
Residual Figure Error at 291K From 1st Cryo Test

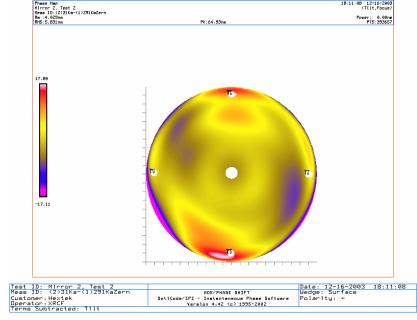
Residual Figure Error at 31K From 2nd Cryo Test

PV = 110nm RMS = 7.8nm

PV = 105nm RMS = 11.9nm

Confirms that 31K, 2nd Test has more quilting than target surface.




Quantitative Check of Cryo-Null Figuring Efficiency: [31K, 2nd Test] minus [291K, 1st Test] (should be zero)

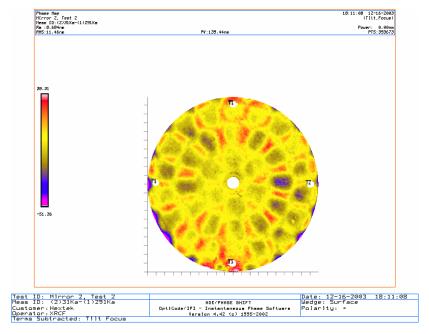
Total Figure Error

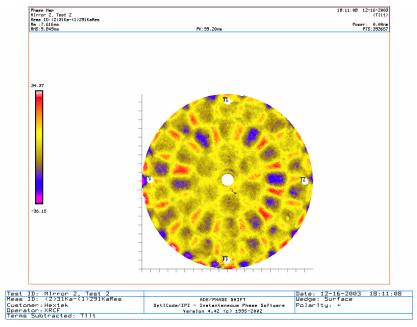
Zernike Fit of Figure Error

PV = 90nm RMS = 11.5nm

PV = 38nm RMS = 5.8nm

Zernike fit of difference shows only 5.8nm-rms of remaining low-order error.



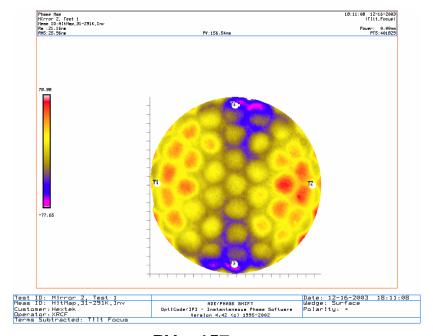

Quantitative Check of Cryo-Null Figuring Efficiency: [31K, 2nd Test] minus [291K, 1st Test] (should be zero)

Total Figure Error

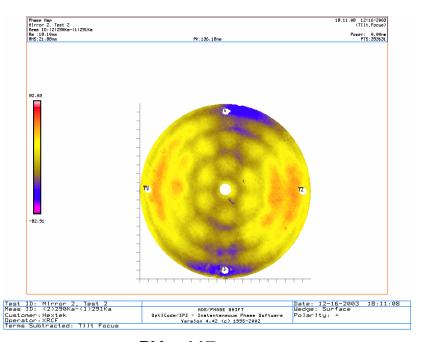
Residual Figure Error

PV = 90nm RMS = 11.5nm

PV = 71nm RMS = 9.9nm


Confirms that cryo-null figuring error dominated by high-order, or quilting, error - will be explained by a misregistration error.

Visual Check of *Desired* vs *Actual*Surface Change Due to Cryo-Null Figuring:

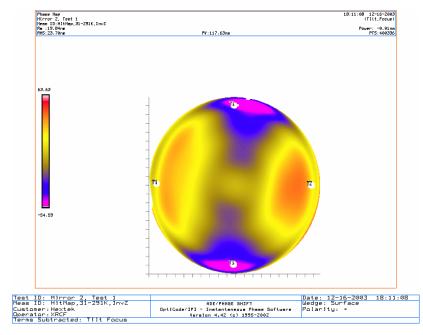


Total Desired Fig Chg [291K(1) – 31K(1)]

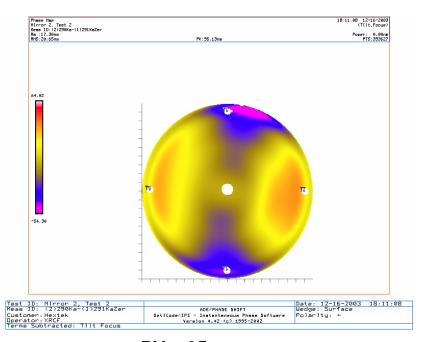
PV = 157nm RMS = 26.0nm

Total Actual Fig Chg [290K(2) – 291K(1)]

PV = 117nm RMS = 21.9nm


As before, low-order correction is good – total error dominated by high-order error.

Visual Check of *Desired* vs *Actual*Surface Change Due to Cryo-Null Figuring:

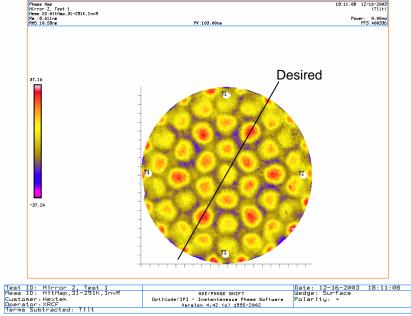


Zernike Fit of Desired Fig Chg [291K(1) – 31K(1)]

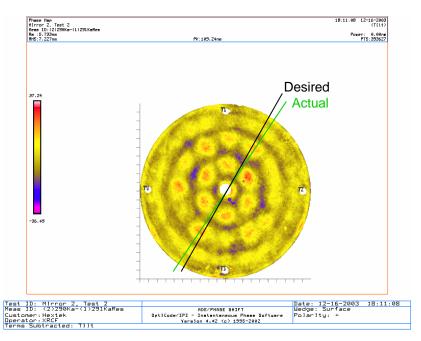
PV = 106nm **RMS** = 23.7nm

Zernike Fit of Actual Fig Chg [290K(2) – 291K(1)]

PV = 95nm RMS = 20.7nm


Confirms good low-order match.

Visual Check of *Desired* vs *Actual*Surface Change Due to Cryo-Null Figuring:


Residual Desired Fig Chg [291K(1) – 31K(1)]

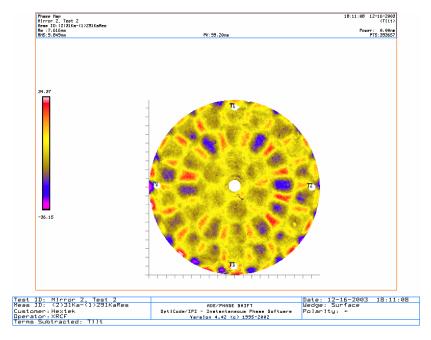
PV = 65nm

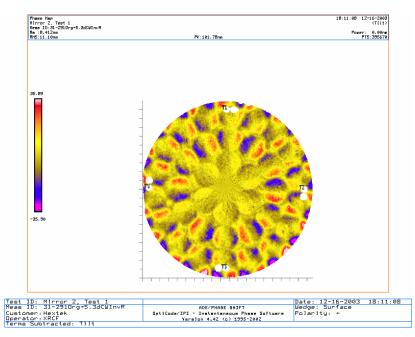
RMS = 10.6nm

Residual Actual Fig Chg [290K(2) – 291K(1)]

PV = 55nm RMS = 7.2nm

From these plots, appears cryo-null figuring hit-map was slightly misregistered to part in clocking by ~5° CW (confirmed via overlay of hardcopies).




Simulation of Clocking Error in Cryo-Null Figuring Hit-Map: [31-291K(1)] – [31-291K(1), 5.3°CW]

Measured Residual Figure Error

Simulated Residual Figure Error

PV = 71nm RMS = 9.9nm

PV = 89nm RMS = 11.1nm

- 31K(2)–291K(1) result, on left, compares well in both magnitude & form (compare shading) to simulated result, on right, giving strong evidence of clocking error.
- Good agreement also indicates MRF performed well aside from clocking error.

Cryo-Null Figuring Summary

- Cryo-null figuring good to about 12nm-rms (cryo fig error reduced by 56%).
 Low-frequency error corrected well, to 6nm-rms (reduced by 76%). High-frequency, or cryo-quilting, error corrected to only 10nm-rms (reduced by only 7%) because of misregistration.
- Looking at new (290K, 2nd Test) minus old (291K, 1st Test) figure at ambient (i.e. figure change imparted by cryo-null figuring), appears cryo-null figuring hit-map was slightly misregistered to part in clocking by about 5° CW.
- Effects of 5° rotational shear analyzed using cryo-deformation from 1st Test.
 Results match observed high-frequency error.
- Know that fiducials were replaced on mirror face at MSFC after cryo-null figuring in repeatable manner by examining template & method used, and since 30K-290K maps from 1st & 2nd tests match.
- Part alignment during polishing was also reviewed and appeared to be more than adequate. Not yet clear where misregistration occurred.
- Also looked at effects of flipping hit-map left/right & top/bottom, but results quite different from observed error.
- Bottom line: 56% reduction in cryo figure error with 1 hour of MRF polishing time – results likely even better with correct hit-map orientation.